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(silanone) is provided by the following experiment. Pyroly-
sis of a benzene solution of silacyclobutane (2.2 mmol), 
benzophenone (4.0 mmol), and hexamethylcyclotrisiloxane 
(10.0 mmol), followed by resolution by preparative GLPC, 
afforded 1,1,3,3,5,5-hexamethylcyclotetrasiloxane (32%) 
and 1,1-diphenylethylene (47%) as the only major reaction 
products15 (Scheme III). 

The products reported in Schemes II and III, the facile 
insertion of [Me2Si=0] into the Si-O bond of (Me2SiO)3 
under similar reaction conditions,16 and the observation 
that (Me2SiO)3 is stable under the reaction conditions con­
stitute convincing evidence for the existence of [H2Si=Oj 
as a transient intermediate. 

We are currently attempting to verify the intermediacy 
of an [ O = S i = O ] species by means of chemical trapping 
experiments. 
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a-Arylation of Carbonyl Groups. Utilization of the 
p-Toluenesulfonylazo Olefin Functional Group as an 
Enolonium Synthon 

Sir: 

In connection with a synthetic study, we required sub­
strates bearing an a-aryl ketone moiety (1). Methodology 
involving the a-arylation of ketones is one conceptual ap­
proach for the synthesis of such systems. Analysis of this 
problem suggests two primary modes of synthesis: (A) the 
combination of an enolate 2 (or its equivalent) with some 
electron-deficient aryl species or (B) reaction of an enolon­
ium (a-keto cation) synthon 3 with an electron-rich aryl 
species. 
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Although the reaction of enolates and enamines with 
strongly activated arenes, diphenyliodonium chloride, or 
benzyne has been shown to produce a-arylated ketones,'"9 

it appears that a more promising approach to enolate aryla-
tion is the method of Rossi and Bunnett involving the reac­
tion of enolates with photogenerated aryl radicals.10"12 An 
intramolecular variant of this latter procedure has recently 
been used to great advantage by Semmelhack et al. in their 
total synthesis of cephalotaxine.1314 

In assessing the enolate method for natural product syn­
thesis, complications can be anticipated in those cases 
where intramolecular condensations (aldol, Claisen) or fi-
eliminations can occur. Additionally, it has yet to be con­
clusively demonstrated that a kinetically generated enolate 
can be regiospecifically arylated."'15 

Whereas, a priori, methodology based on mode (B) might 
avoid some of these difficulties, there has been essentially 
no effort to utilize such a strategy.1617 

Superficial consideration of this problem suggests that 
the reaction of a-halo ketones with lithium diarylcuprate 
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might provide a method of a-aryi ketone synthesis; how­
ever, since the reaction of a-halo ketones 4 with lithium di-
alkyl cuprates has been shown to produce both a-alkylated 
ketones 5 and reduction product 6, it was anticipated that 
similar difficulties would also occur with lithium diarylcu-
prate.18-24 This is indeed the case.25-26 

In contrast to the difficulties associated with reaction of 
a-halo ketones with cuprates, the conjugate addition of cu­
prates to a,/3-unsaturated carbonyl systems is known to be 
an exceptionally facile reaction.27 In simplest terms (de­
tailed mechanism notwithstanding), this reaction may be 
visualized as a formal Michael-type addition of an alkyl 
(vinyl, aryl) group to the terminus of a four-atom array 
with concomitant generation of a stabilized anion (X = C, 
Y = O). These considerations suggest that the p-toluenesul-
fonylazo olefin system (X = N, Y = NSO2C7H7) should be 
an excellent substrate for conjugate addition reactions.28,29 

r Y R 
X * ^ R2CuLi 

, / 

Specifically, reaction of p-toluenesulfonylazocyclohex-
1-ene (7) (prepared from the tosylhydrazone of a-bromocy-
clohexanone by the method of Caglioti30) with lithium di-
phenylcuprate or phenylcopper leads to complete consump­
tion of starting material within 1 min ( - 6 0 ° , THF-ether) 
concurrent with the production of pure a-phenyltosylhydra-
zone8b(70-75%). 3 U 3 5 

N' 
^NHSO2C7H7 ,NSO2C7H7 

1. (C6H-,), CuLi or 

C6H5Cu 

2.H+ 

.NHSO2C7H7 

CBHS 

The considerable reactivity of azo-ene 7 can be further 
demonstrated in a competition experiment. Addition of a 
1:1 mixture of 7 and cyclohexenone to 1 equiv of (06Hs)2 

CuLi in THF-ether at - 6 0 ° , followed by quenching with 
acetic acid after 1 min, yields product only resulting from 
reaction of azoene 7, the enone being recovered unchanged. 

7 + 
l,(C,H.,)jCuLi.-60 . 1 min 

• • 

2, HOAc 
8b 

(70%) 
+ LJ. 

^ ^C6H5 

<<1%.VPC) 

In attempting to generalize this reaction, it became in­
creasingly more obvious that in many cases the labile tosy-

lazdenes could not be obtained in sufficient yield and purity 
to be synthetically useful.3637 

Since azoenes may be generated in situ, there is fortu­
nately no need to isolate them. For example, reaction38 

( - 6 0 ° , THF-ether, 5 min) of a series of a-halotosylhydra-
zones (9a-e)32-33 (prepared3013 from the corresponding a-
halo ketone,39 average yield 78%) with an excess (2.5-3.0 
equiv) of phenylcopper (1 equiv serving as base for azoene 
generation) smoothly produces the a-phenyltosylhydra-
zones 8a-e , 3 2 3 3 which may be converted in high yield via 
carbonyl exchange40 to the corresponding a-phenyl ketones 
10a-e.3 2 3 3 

NNHSO2C7H7 

CH1Cu 

NNHSOAH 7 

C6H5 

THF-Et3O 

BF EtX) 
* 

'CH.i.rO-H.O 

9a, n = 5; X = Cl 
M = 6;X = Br 

c, n- 7; X - Cl 
d,n = 8;X = Cl 
e, n = 12; X = Br 

8a (72%) 
b (75%) 
c (77%) 
d (87%) 
e (94%) 

C11H, 

10a (94%) 

b (95%) 

c (88%) 

d (83%) 

e (80%) 

Although reaction of the tosylhydrazone of phenacyl bro­
mide 11 with phenylcopper still proceeds rapidly under the 
standard conditions,38 similar reaction with the more stable 
o-(dimethylaminomethyl)phenylcopper (12b)41-42 requires 
more forcing conditions ( - 2 0 ° , 0.5 hr). 

NNHSOC7H7 x 
HjC11 CH2Br 

Cu. 

+ 
1 1 12a. Z = H 

12b. Z - CH2N(CH3), 

NHSO2C7H1 

N ^ N , BF.-Et,0 

(CHj)XO-H1O 
H5C 

Z 
13a (81%) 
13b (70%) 

14a (85%) 
14b (93%) 

The further utility of the tosylazo olefin group as an eno-
lonium synthon is demonstrated in the reaction of a-bromo-
)3-keto ester tosylhydrazones 15a,b43 with phenylcopper. 
Conceptually, intermediates 16a,b could either produce cin-
nimate esters 17a,b via /3-phenyl addition (followed by ex­
trusion of nitrogen and p-toluenesulfinic acid)44 or tosylhy­
drazones 18a,b via a-addition. Examination of the product 
mixture by VPC revealed no detectable amounts of esters 
17a,b.45 Hydrolysis of tosylhydrazones 18a,b by the usual 
method40 produced the corresponding a-phenyl-^-keto es­
ters in high yield. 

Although the primary goal of this investigation was to 
provide methodology (in combination with the excellent re-
giospecific procedures available for the synthesis of a-halo 
carbonyl compounds46) for the a-arylation (alkylation34) of 
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R Br 

15a,R = H 

15 b, R = CH3 

H1C6Cu 

HsCe 

N2SO2C7H7 

CO2CH= 

H3C CO2C2H, 

NNHSO2C7H7 

H3C^ X C 0 2 C 2 H 5 
H5C6 R 

18a (90%) 
18b (83%) 

carbonyl groups, 4 7 the a-aryl (alkyl3 4) tosylhydrazones pro­
duced via the azoene route should serve equally well as pre­
cursors for previously established tosylhydrazone (carbene , 
olefin, methylene, etc.) t ransformat ions . 4 8 
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